
Int. J. Inf. Secur. (2014) 13:355–366
DOI 10.1007/s10207-013-0223-8

REGULAR CONTRIBUTION

Enhancing security of cookie-based sessions in mobile networks
using sparse caching

Amerah Alabrah · Jeffrey Cashion ·
Mostafa Bassiouni

Published online: 19 December 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract The exponential growth in the use of mobile
phones and tablets to gain wireless access to the Inter-
net has been accompanied by a similar growth in cyber
attacks over wireless links to steal session cookies and
compromise private users’ accounts. The popular one-way
hash chain authentication technique in its conventional for-
mat is not optimal for mobile phones and other hand-
held devices due to its high computational overhead. In
this paper, we propose and evaluate the use of sparse
caching techniques to reduce the overhead of one-way hash
chain authentication. Sparse caching schemes with uniform
spacing, non-uniform spacing and geometric spacing are
designed and analyzed. A Weighted Overhead formula is
used to obtain insight into the suitable cache size for dif-
ferent classes of mobile devices. Additionally, the scheme
is evaluated from an energy consumption perspective. We
show that sparse caching can also be effective in the
case of uncertainty in the number of transactions per user
session. Our extensive performance tests have shown the
significant improvement achieved by the sparse caching
schemes.

Keywords Session cookies · Mobile devices ·
Wireless networks · Caching

A. Alabrah · J. Cashion · M. Bassiouni (B)
Department of Electrical Engineering and Computer Science,
University of Central Florida,
Orlando, FL, USA
e-mail: bassi@cs.ucf.edu

A. Alabrah
e-mail: amerah@knights.ucf.edu

J. Cashion
e-mail: jcashion@knights.ucf.edu

1 Introduction

Wireless networks have more types of security threats and
are much more prone to malicious attacks than wired net-
works. Serious security vulnerabilities exist in all types of
wireless networks including 802.11 wireless LANs, wire-
less ad hoc networks, multihop wireless mesh networks and
wireless sensor networks [1–4]. In this paper, we examine
the particular security threat of hijacking user’s private ses-
sions over wireless links. This threat is increasingly on the
rise due to two reasons: (1) the worldwide proliferation of
smartphones, tablets and other handheld mobile devices as
a primary tool for Internet access and (2) the increasing use
of HTTP cookies by web applications to speed up responses
to users and offer a better web experience that is more per-
sonalized and richer in interactivity. Since cookies are stored
on the client machine, they are one of the most popular tools
available to web developers to create better web applications
without requiring significant server resources. Session cook-
ies are being increasingly used for many purposes including
session and transaction authentication, tracking of shopping
cart contents, identification of user’s preferences and track-
ing browsing behavior. Cookies usually exist as plain text on
the client machine and can be tampered with by attackers if
they succeed to compromise this machine.

Many Web sites encrypt the user’s password and perform
robust authentication using HTTPS during the initial login
only, but do not apply the same level of costly HTTPS pro-
tection in further transactions. Web servers rely on session
cookies saved locally at the client side to perform authenti-
cation after the initial login. Among the information stored
in these cookies is a shared hashed secret, which is used
as a proof that the user has been successfully authenticated
at the initial login. As these cookies are transmitted over a
wireless link using the unsecure HTTP protocol, the commu-

123

356 A. Alabrah et al.

nication between the user and the web server is vulnerable to
cookie hijacking. An attacker could take over a user’s account
by sniffing out the transmitted HTTP cookies. By hijack-
ing session cookies, it becomes possible for the attacker to
impersonate the victim and interact with the Web site without
proper authorization.

In this paper, we investigate the problem of securing
cookie-based sessions in wireless networks. We present tech-
niques that enable mobile phones, tablets and similar wire-
less handheld devices to efficiently execute the one-way hash
chain authentication technique and prevent attackers from
getting a hold of a user’s cookie in a wireless environment.
Our proposed techniques are fast, lightweight and easy to
implement in modern software.

The rest of the paper is organized as follows. In Sect. 2,
we highlight some previous work that has been performed
in this area. In Sect. 3, we define the one-way hash chain
model used in our paper. In Sect. 4, we introduce the sparse
caching approach and present its design details and introduce
the Weighted Overhead (WO) formula. In Sect. 5, we discuss
the results of our performance tests and the evaluation of our
proposed techniques. In Sect. 6, we conclude the paper.

2 Previous work

The past few years have witnessed an exponential growth in
the use of smartphones and tablets to gain wireless access to
the Internet. This growth has been accompanied by a simi-
lar growth in cyber attacks over wireless links to steal ses-
sion cookies and hijack private users’ accounts. For example,
the Android application FaceNiff [5] makes it easy to hijack
other people’s sessions using an Android smartphone with
root access. The application is claimed to work over any
private Wi-Fi network using any of the common protocols,
including WEP, WPA-PSK, WPA2-PSK or no security at all.
FaceNiff can be used to intercept web session profiles and
easily hijack sessions for Facebook, Twitter, YouTube, Ama-
zon, MySpace, Nasza-Klasa, blogger, etc. The only excep-
tion that disables FaceNiff is when the session is protected by
EAP or SSL. In a similar vein, Firesheep [6], an extension for
Firefox, clearly revealed that many sites fail to protect users
against session hijacking attacks. To alert users of these vul-
nerabilities, a Firefox plug-in extension has been developed
in [7] which notifies users if the server they are visiting is
susceptible to cookie hijacking. This extension only gives
warning for users to avoid risky web sessions but does not
provide protection.

Several solutions have been proposed to address the prob-
lem of cookie hijacking in wired and wireless networks. Liu
et al. [8] proposed a secure cookie protocol for ensuring
integrity of each transmitted cookie by applying HMAC on
the concatenation {username | expiration time | data | ses-

sion key}. Their fundamental assumption, however, is that the
secure cookie protocol would either encrypt the data using a
session key or run on top of SSL.

Alternatively, a possible candidate to address this problem
is the Lamport’s well-known one-way hash chain technique
for one-time passwords [9] which has been used in many
authentication protocols. For example, the attack-resilient
security architecture ARSA [10], proposed for multihop
wireless mesh networks, uses a hierarchical one-way hash
chain to authenticate beacons transmitted by mesh routers.
The Ariadne secure on-demand Adhoc network routing pro-
tocol [11] uses hash chains in its Route Discovery phase and
in later phases to thwart the effects of routing misbehavior.
The SEAD protocol [12] proposed for Adhoc networks also
uses a one-way hash chain for authenticating important rout-
ing information such as the routing metric and the sequence
number. This prevents any malicious node from falsely adver-
tising a better route or tampering with the critical routing
information contained in the packet that it received from the
source. Our main motivation for using one-way hash chain as
a technique to secure session cookies is their cryptographic
strength. Our objective is to propose a scheme which not
only preserves this feature (i.e., cryptographic strength), but
also uses it in a computationally efficient manner. Unlike
HMAC-based schemes discussed above, using the one-way
hash chains to secure cookies minimizes the chances of them
being sniffed out and abused for unlawful utilization by enti-
ties other than the respective parties.

The one-way hash chain technique has been recently used
to protect against cookie hijacking in wireless networks.
The one-time cookies (OTC) protocol proposed in [13] is
a straightforward implementation of Lamport’s hash chain
technique for one-time passwords. The authors implemented
OTC as a plug-in for Firefox and Firefox for mobile browsers.
OTC uses a hash chain construction to generate a sequence
of values that can be used as one-time authentication tokens.
These tokens, once verified by the web application, cannot
be reused due to the pre-image resistance property of crypto-
graphic hash functions. The rolling code protocol proposed
in [14] is an attempt to reduce the computational overhead of
the OTC protocol for mobile devices with constrained mem-
ory. The protocol replaces the hash chain performed by OTC
in each transaction by two hash operations: one to update
and randomize the value of a variable d = hash(d) and the
other to produce a one-time authentication token by apply-
ing a hash function on the Exclusive-OR of a secret seed and
the new value of d. In essence, the protocol is much like the
rolling code technology used to prevent perpetrators from
recording a code and replaying it to open a garage door. The
rolling code protocol is less robust than the one-way hash
chain approach (e.g., the OTC protocol) but is lightweight
and more suitable for mobile phones and PDA’s. Although
the seed is guaranteed to be fresh during each iteration due to

123

Enhancing security of cookie-based sessions 357

the monotonic function used to increase the value of d, there
is a high risk of discovering this value and consequently com-
promising the Internet session.

It should also be noted that ever since its inception,
the Lamport’s well-known one-way hash chain technique
for one-time passwords has been used in many authentica-
tion protocols in a variety of environments including wire-
less sensor networks [15–18], smart card-based authentica-
tion schemes [19,20] and banking authentication schemes
[21,22].

In this paper, we propose using a sparse caching approach
to attain the full level of security of one-way hash chains but
at a much reduced computational overhead. An earlier pro-
posal for sparse caching was given by Gupta et al. [23] as
a way to reduce directory memory requirements. The hall-
mark of this approach is that a memory block is allocated
for each active entry, and invalidated data are discarded as
they are no longer needed. Because of this feature, sparse
caching techniques have been appealing in a variety of envi-
ronments and applications. The authors of [24], for instance,
proposed a method to improve users’ perceived performance
in wireless networks using sparse infrastructure. Also, the
authors of [25,26] suggested using sparse caching in multi-
media applications. As we describe our proposed solution,
we also introduce several cache spacing configurations that
are deployable in different scenarios.

3 The one-way hash chain model

We first present the notations for the one-way hash chain
technique that we will use in this paper. We will refer to this
hash chain technique as the HACH technique, which can be
described as follows:

HACH uses an initial secret s which is the seed of the hash
chain. We apply a cryptographic hash function H() succes-
sively to obtain the following values

V0 = s
V1 = H(V0) = H1(s)
V2 = H(V1) = H2(s)
. . .

Vj = H(Vj−1) = H j (s)
. . .

VN = H(VN−1) = H N (s)

Due to the pre-image resistance property of the hash function
(e.g., SHA-1), the values Vi are distinct and can therefore be
used to represent one-time authentication tokens in succes-
sive user transactions after the initial login, i.e., the value
of the appropriate V token is stored in the session cookie
transmitted by the client to the server in each transaction. To
properly use the one-way hash chain, these values must be
transmitted in reverse order. In the first transaction after login,

the client browser transmits the value VN . Similarly, the client
transmits VN−1 in the second transaction and VN−i+1 in the
ith transaction.

During the initial HTTPS authentication, a shared secret
value s and a value chain length N representing the number of
transactions are exchanged between the client and the server.
After the initial login, the costly HTTPS protocol is replaced
by HTTP and authentication is done by sending the one-time
authentication tokens in the session cookies. Upon receiving
the value of an authentication token, the server computes a
similar value based on the values of N and s and accepts the
transaction if the received value matches the computed value.

The variable N is the chain length and represents an upper
bound on the number of transactions that can be handled by
the above hash chain. One difficulty with the HACH tech-
nique is that the efficient use of the chain requires an accurate
estimation of the value of N, i.e., the number of transactions
expected during the lifetime of the session. If the number of
transactions is overestimated, the authentication in the early
steps will suffer from an unjustified large computational over-
head. If the number of transactions is underestimated, there
will be the undesirable synchronization overhead of estab-
lishing a new secret and a new number for the remaining
transactions. For our initial presentation of the sparse caching
technique, we will assume that the number of transactions in
a session, N, is accurately known. Later in the paper, we will
show how the sparse caching technique can be used to effec-
tively deal with the case when the value of N is not accurately
known.

We will use the number of hash operations executed per
transaction as the metric to evaluate the execution overhead
of the process of verifying this transaction using the authenti-
cation token transmitted by the client. We denote this metric
for the ith transaction by HCosti . Smaller values of this met-
ric indicate faster speeds for the authentication process. The
total cost of the entire session is the sum of the costs of the
N transactions and is denoted by TotalHCost.

Assuming no caching, the first transaction computes
H N (s) and has a cost HCost1 = N . In general, the ith
transaction computes H N−i+1(s) and has a cost HCosti =
N − i + 1. We have

Total Hcost =
N∑

i=1

(N − i + 1) = N (N + 1)

2

The maximum and average value of the transaction execution
overhead are given by

HCostmax = N

HCostavg = (N + 1)/2

It is important to stress that the authentication tokens are gen-
erated by successive hashing from V0 to X N but are exposed
(i.e., presented as authentication tokens) from VN to V0. The

123

358 A. Alabrah et al.

reverse presentation of the values of the hash sequence is a
fundamental feature that must be enforced in order to attain
the good security properties of one-way hash chains. Expos-
ing (presenting) the hash sequence values in the same forward
order in which they are generated makes the scheme much
less secure because if one hash value is compromised, the
attacker can compute all the hash values that will be used in
the future.

4 Sparse caching for HACH

4.1 Basic idea

The main drawback of the HACH protocol is the need to per-
form the hashing operation N times for the first transaction,
N − 1 times for the second transaction, and so on. For large
values of N, the HACH technique is costly and is not gen-
erally suitable for many limited resource mobile devices. To
remedy this problem using little storage, we compute a small
number of the authentication tokens and cache their values
during the initial setup. For example, if N = 100. We can
reserve five storage units (of length 160 bits for SHA-1) at
the initial setup to store the following values (note: cache[0]
is included for ease of indexing)

cache[0] = s
cache[1] = H20(s),
cache[2] = H40(s),
cache[3] = H60(s),
cache[4] = H80(s).

The above values can be computed using a simple loop that
computes the hash function 80 times. The availability of the
above cache values reduces the execution overhead of trans-
actions considerably. For example, the first transaction can
now start by fetching the value of cache[4] then perform-
ing 20 more hashes to obtain H20(H80(s)) = H100(s). The
value HCost1 for the first transaction has been reduced from
100 to 20. Basically, the sparse caching scheme has divided
the initial hash chain into five minichains, each with length
20.

The above example uses sparse caching with uniform
(equal) spacing. We will examine non-uniform spacing later,
but we will first formally define the uniform spacing model
and examine its characteristics.

4.2 Sparse caching with uniform spacing

This scheme is defined by two parameters: the size of
the cache, cache_size, and the uniform space interval,
minichain_len. In the above example, cache_si ze = 5 and
minichain_len = 20.

The pseudocode to compute the authentication token of
the ith transaction is presented below. Notice that in the
ith transaction, the client transmits the value VN−i+1 =
H N−i+1(s).

Authentiaction_Token(i);

k = (N − i)/minichain_len //integerdivision
m = N − (k × minichain_len)

VN−i+1 = Hm(cache[k])

Using the uniform sparse caching scheme, the total cost of a
session including the cost of the initial cache setup is given
by

TotalHCost = C × M(M + 1)

2
= N (M + 1)

2

where C = cache_si ze, M = minichain_len, and N =
C × M . The above formula is derived under the simplifying
assumption that N is divisible by C. The cost Total HCost is
the sum of two components: a cost of (C − 1) × M for the
initial filling of the cache values and a cost of (C −1)× M ×
(M + 1)/2 for the N transactions. Notice that (C − 1) of the
N transactions will not need to perform any hashing since the
required value is already in the cache. For the above example
of N = 100 and C = 5, transaction #21 will simply read
V80 from cache[4]. The maximum and average value of the
transaction execution overhead are given by

HCostmax = M // for the 1st transaction

HCostavg = 0.5 × (C − 1) × (M − 1)/C

In Sect. 5, we evaluate the trade-offs of the sparse caching
scheme and examine policies for selecting the cache size
C for different values of N. It is important to notice that
the sparse caching scheme is applied only to the user
mobile device, not to the server. The server can com-
pute the same authentication tokens using any caching
scheme; for example, it may use a complete caching scheme
that stores all authentication tokens in the cache during
initialization.

4.3 Weighted Overhead formula

For a session with N transactions and a user with a cer-
tain mobile device, what would be the best cache_size C?
In answering this question, we first recognize that wireless
users can use mobile devices having a wide range of capabil-
ities. Some users may use high-end laptops that have plenty
of storage resources, while others may use mobile phones
with limited memory. We use the following WO formula to
obtain insight into the suitable value of the cache_size C.

123

Enhancing security of cookie-based sessions 359

WO = w × cache_si ze + Total HCost

where w is the weight assigned to the cost of using memory
in the mobile device. The WO formula is simply a pragmatic
approach to select the size of the cache for the different cate-
gories of mobile devices. The WO obtained from the formula
can be viewed as the combined cost of memory and execu-
tion overhead where w is the cost of memory relative to a unit
cost of execution. The value of w may be assigned based on
classes. For example, we may have three classes of mobile
devices with the following weights.

Class 1: w1 is used for high-end laptops with plenty of
memory.

Class 2: w2 is used for mobile devices, e.g., high-end
smartphones and tablets, with reasonable but constrained
memory resources.

Class 3: w3 is used for mobile devices, e.g., low-end
mobile phones, with very limited memory resources.

We have the obvious relationship w3 > w2 > w1. To
choose the best cache size for a mobile device, we simply
minimize the value of the WO. For Class 1, the value of w1

is nearly zero and the minimization problem reduces to mini-
mizing the second term TotalHCost. Minimizing TotalHCost
is achieved by choosing the largest possible value of cache
size, which is simply N. This means that for high-end laptops,
the sparse caching scheme is replaced by complete caching in
which the authentication token value Vj is obtained by fetch-
ing cache[j] without performing any hash computation. For
Classes 2 and 3, plotting the value of WO versus cache_size
could reveal the best size that minimizes the combined cost.

In Sect. 5.4, we present performance results that show how
the WO formula can be used to gain insight into selecting the
size of cache.

4.4 Uncertainty in the number of transactions

In all previous discussions, we assumed that the number of
transactions in a session, N, is accurately known. In real-life
applications, however, the value of N is usually only approx-
imately known. If the application developer chooses a value
for N that is too small, the hash chain will be exhausted before
finishing all of the transactions of the session. If the selected
value of N is too large, the transactions will have large exe-
cution overhead. It is difficult for an application developer
to consistently strike a good balance of N for the different
sessions of the different users. The sparse caching approach
presented earlier comes into play to elegantly solve this prob-
lem. Below, we elaborate on this issue.

Suppose that we know that a session will have approxi-
mately 1,000 transactions, but there is some likelihood that
it could have up to 2,000 transactions. Without any caching,
the developer will be tempted to choose a value of N between
1,000 and 2,000 to strike a balance between reducing HCost

for the individual transactions and avoiding the scenario of
exhausting the chain and resorting to costly HTTPS authen-
tication and additional hash chain setup. By placing a sin-
gle cached value cache[1] = H1,000(s) at the middle of the
range, the developer can safely select N = 2, 000 with a
guarantee that HCostmax will be 1,000 and the costly HTTPS
re-initialization will not be needed. By placing a second
cached value at 2,000, the developer can extend the value
of N to 3,000 with the same guarantee that HCostmax will be
1,000 and the costly HTTPS initialization will not be needed.
The sparse caching scheme can be used with few cached
units to extend the range of N to a large safe value with-
out incurring an increase in the execution overhead of indi-
vidual transactions or running the risk of additional HTTPS
setup.

In Sect. 5, we present test results that illustrate the appli-
cation of sparse caching for the case of approximate values
of N.

4.5 Sparse caching with non-uniform spacing

The case of uncertain values of N motivates the use of sparse
caching with non-uniform distribution. We elaborate on this
by an example.

Suppose it is highly probable that the number of transac-
tions in a user session will be 100 or less, but there is some
small probability that this number could go up to 500. As
shown earlier, we could use the sparse caching scheme to
set the value of N to 500 without increasing the value of
HCostmax above 100. We can actually do better than this by
choosing non-uniform cache spacing to significantly improve
the execution overhead of the first likely 100 transactions. For
example, we can distribute 9 cache values non-uniformly as
follows:

cache[0] = s
cache[1] = H100(s)
cache[2] = H200(s)
cache[3] = H300(s)
cache[4] = H400(s)
cache[5] = H420(s)
cache[6] = H440(s)
cache[7] = H460(s)
cache[8] = H480(s)

The above scheme gives priority to the first 100 transac-
tions with a guaranteed value of HCostmax = 20. The other
less likely 400 transactions will be guaranteed a value of
HCostmax = 100.

Schemes for the forward generation and reverse presen-
tation of one-way hash chains can use different topologies
including tree topologies. But the simplicity of the proposed
sparse caching authentication scheme and its flexibility in
dealing with different scenarios (such as the non-uniform

123

360 A. Alabrah et al.

spacing discussed in this section or the geometric spacing
discussed in the next section) make the scheme more prac-
tically appealing than other schemes for implementing one-
way hash chains [27].

In Sect. 5.5, we present the results of our tests to evaluate
non-uniform spacing for sparse caching.

4.6 Caching with geometric spacing

In the previous section, the non-uniform spacing of cached
values was achieved by creating two groups: the high-priority
group (first 100 transactions in the above example) and the
low-priority group (the remaining less likely 400 transac-
tions). Within each group, the cached values are distributed
uniformly. This scheme is suitable when the value of N is not
accurately known but there is knowledge about the minimum
value of N, i.e., the number of transactions that are most likely
or are guaranteed to occur. If this knowledge is not available
(i.e., the value of N could range from a small number to a
large number), it would be better to distribute the cached val-
ues at progressively increasing intervals. One possible pro-
gressive strategy is the geometric distribution scheme. We
illustrate this scheme using the previous example in which
the value of N could be as small as 1 but could go up to
500. We use nine cached values geometrically distributed as
follows:

cache[0] = s
cache[1] = H246(s)
cache[2] = H374(s)
cache[3] = H438(s)
cache[4] = H470(s)
cache[5] = H486(s)
cache[6] = H494(s)
cache[7] = H498(s)
cache[8] = H500(s)

The first transaction uses cache[8] = H500(s) and will not
need to perform any hash operations. The second and third
transactions use cache[7] = H498(s), resulting in perform-
ing one hash operation for the second transaction and no oper-
ation for the third transaction. The transactions numbered 4,
5, 6 and 7 use cache[6] = H494(s) resulting in performing 3,
2, 1 and 0 hash operations, respectively, for these four trans-
actions. Notice that the cached values are anchored at points
that are geometrically spaced apart. The difference between
the number of hash operations performed for cache[8] and
cache[7] is 2, between cache[7] and cache[6] is 4, between
cache[6] and cache[5] is 8, between cache[5] and cache[4]
is 16, and so on. As the number of transactions in the real
session increases, the range of the number of hash operations
will increase geometrically and high-numbered transactions
will need to perform larger number of hash operations on
average.

The result of the geometric distribution scheme is to give
smaller HCostavg value for earlier transactions. Shorter ses-
sions will benefit more from the geometric distribution.

In Sect. 5.7, we present the results of our tests to evaluate
sparse caching with geometric spacing.

4.7 Energy consumption

When designing any authentication protocol for mobile
devices, it is important to reduce the energy expended by
this protocol. According to [28], there are at least three
approaches to preserving battery life in mobile devices: effi-
cient hardware, accurate knowledge of energy consumption
of different cryptographic approaches and light weight secu-
rity mechanisms. In designing our protocol, one of our major
goals was to come up with a light security mechanism while
ensuring the highest cryptographic strength available.

Energy consumption is largely influenced by the crypto-
graphic hash function used in the authentication scheme as
different hash functions have different energy consumption
levels. The authors of [29] conducted an extensive analysis of
energy characteristics of various cryptographic approaches
and found that energy varies according to the crypto-
graphic approach utilized. For SHA, SHA1 and HMAC, the
energy required to conduct a single operation is 0.75, 0.76
and 1.16 microjoule/byte, respectively (for a complete list
of energy consumption characteristics of different crypto-
graphic approaches, please refer to [29]). The level of energy
consumption by our authentication protocol in a user session
is correlated with the value of TotalHashCost described in
Sect. 4.2.

In Sect. 5.8, we compare the energy consumption of our
sparse caching protocol and compare it with the case of no
caching. It should be noted though that the initialization phase
is not included in this comparison because it is conducted
using HTTPS.

5 Evaluation and performance results

To experiment with the sparse caching HACH scheme, we
developed a benchmark which was written using Java. The
benchmark fully implements the one-way hash chain model
and the different sparse caching configurations.

In the tests and experiments to evaluate the performance of
HACH, we considered several situations and different sce-
narios. Our objective was to simulate real-life connections
which are characterized by differing needs as far as stor-
age and performance are concerned. Therefore, we used the
benchmark to evaluate the HACH performance with num-
bers of transactions having different ranges: from 1 to 200
for short sessions, from 500 to 2,500 for long sessions and
up to 4,000 and 5,000 transactions in some tests. We also

123

Enhancing security of cookie-based sessions 361

varied the storage availability to make sure that we address
different users’ needs. The storage spaces used to evaluate
performance ranged from 20 to 500 spaces.

5.1 Impact of cache size on HACH performance

Figure 1 shows the impact of cache size on the performance
of HACH. The execution overhead of HACH is measured by
TotalHCost, the total number of hash operations in a session
including the initial cache setup. The spacing scheme used
in Fig. 1 is the uniform sparse caching scheme described in
Sect. 4.2. The results in Fig. 1 are obtained from the Java
testbed, and they agree with the cost estimation derived in
Sect. 4.2. The results clearly show that the more cache we
have, the less the TotalHCost would be.

Figure 2 demonstrates the impact of cache size on the
average value of the execution overhead of one transaction
(i.e., HCostavg). Again we see that the more cache we have,
the less the value of HCostavg. The sparse caching scheme
speeds up transaction authentication and helps in reducing
the turnaround time of user requests.

Fig. 1 Impact of cache size on TotalHCost. *In thousands

Fig. 2 Impact of cache size on HCostavg

5.2 Cache space allocation policies

In Sect. 4.3, we proposed a WO formula and gave an example
of three classes for mobile devices used in wireless networks.
For Class 1 (high-end laptops with plenty of memory), we
can afford to allocate large cache memory to get the best
benefit of HACH. For Classes 2 and 3 (mobile phones with
limited capability), the memory allocated to cache will be at a
lesser level. To investigate the performance of sparse caching
on the different mobile devices, we used the following two
policies for allocating cache memory to a user session with
N transactions:

1. The square root (sqrt) policy which allocates cache_si ze
= (N)0.5 for a session with N transactions.

2. The logari thm (log2)policy which allocates cache_si ze
= log2(N) for a session with N transactions.

We have tested a few other policies, but we select the
above two policies for presentation in this paper because
they nicely suit the classification of mobile devices described
in Sect. 4.3. The log2 policy is an aggressive policy which
reserves more memory and therefore can be used for Class 1
devices. The sqrt policy, on the other hand, exhibits a more
conservative behavior and reserves smaller amount of cache
memory, which is suitable for low-end mobile devices of
Classes 2 and 3. Both policies can be multiplied by a scale
factor (ranging from a small fraction to a large number) to
adapt the rate of memory allocation based on the capability
of the mobile device, e.g., to differentiate between Class 2
and Class 3.

Figure 3 shows the HACH execution overhead, and Fig. 4
shows the HACH storage overhead of the sqrt and log2 cache
allocation policies. The log2 policy allocates more cache
space and consequently incurs a much less TotalHCost. The
sqrt policy allocates less cache space and incurs much higher
TotalHCost.

Fig. 3 HACH performance with two policies for sparse caching. *In
thousands

123

362 A. Alabrah et al.

Fig. 4 HACH storage requirements with two policies for sparse
caching

Table 1 HACH performance with/without sparse caching using the
sqrt policy

Number of
transactions

TotalHCost
no caching

TotalHCost
sparse
caching

Performance
ratio

500 125,250 5,702 21.97

1,000 500,500 16,404 30.51

1,500 1,125,750 29,811 37.76

2,000 2,001,000 45,750 43.74

3,000 4,501,500 83,625 53.83

4,000 8,002,000 127,506 62.76

5.3 Effectiveness of sparse caching

In this section, we present the simulation results when
we compared the performance of HACH with and with-
out sparse caching. Table 1 summarizes the results we
obtained from tests using the square root (sqrt) policy.
The performance ratio in the last column is the ratio
TotalHCost with no caching/TotalHCost with sparse caching.
The sparse caching scheme significantly improves perfor-
mance of HACH. Sparse caching is able to decrease TotalH-
Cost in transactions by an average of approximately 41 times
over the six values of N shown in Table 1.

In Fig. 5, we further illustrate the performance improve-
ment ratio of the HACH using sparse caching. The x-axis
represents the number of transactions, and the left y-axis rep-
resents the performance improvement ratio associated with
every value of N. The right y-axis shows the storage require-
ment for each value of N. We notice that each added cache
unit decreases the value of TotalHCost. This is intuitive since
if we can afford more memory, we would definitely improve
performance. However, in the case of mobile phones and
other low-end mobile devices, the storage may not always be
readily available and we need to find a compromise between
performance and storage.

Fig. 5 HACH performance improvement ratio

Fig. 6 Weighted Overhead results for N = 500. *In thousands

5.4 Selecting cache size for mobile devices

In order to find the best trade-off between cache size and
performance (measured in TotalHCost), we introduced the
WO formula

WO = w × cache_si ze + Total HCost

In the simulation tests, we experimented with different values
of w to represent the different classes. For Class 1 devices, the
value of w was a small value close to zero because memory
consumption is not a substantial issue with high-end devices.
Higher values of w are used for Class 3 devices, and lower
values are used for Class 2 devices. We ran tests for different
values of N.

Figure 6 shows the best cache size when the number of
transactions is 500. The left y-axis represents the value of
the WO, and the right y-axis is the value of TotalHCost.
The values of weights are w1 = 0.1 representing Class 1
devices, w2 = 12 representing Class 2 devices and w3 = 35
representing Class 3 devices. The dashed curve is used to
indicate TotalHCost. We notice that for this particular number
of transactions (N = 500), a cache size of 50 units is the most

123

Enhancing security of cookie-based sessions 363

suitable for Class 3 devices as it exhibits the lowest WO value
which strikes an acceptable trade-off between TotalHCost
and memory. For Class 2 devices, the best cache size is 100.
We notice for Class 1 devices represented by w1, the WO
curve is very close to the TotalHCost curve, indicating that
we should select the highest possible cache size C = N , i.e.,
complete caching of size 500.

Figure 7 shows the same test but with N = 1, 000. The
same w values reported for Fig. 6 were used here. For Class
3 devices (w3 curve), the best cache size is slightly over 100.
For Class 2 devices (w2 curve), the best size of cache is 250.
For Class 1 devices (w1 curve), it is best to use complete
caching of size 1,000.

We further analyzed the performance of sparse caching
for HACH using a metric called the speedup factor per unit
cache (or simply the speedup factor) defined as follows:

Speedup f actor = H1/(H2 ∗ C)

where

H1 = the value of TotalHCost without caching and

H2 = the value of TotalHCost with sparse caching of size C

Table 2 gives the results for the speedup factor for Class 3
(weight w3 = 35) when the cache size used is the best cache

Fig. 7 Weighted Overhead results for N = 1, 000. *In thousands

Table 2 Speedup factor per unit cache for Class 3

Number of
transactions

Cache size H2 H1 Speedup

500 50 2,750 125,250 0.91

1,000 100 5,500 500,500 0.91

1,500 150 8,250 1,125,750 0.91

2,000 250 9,000 2,001,000 0.89

3,000 250 18,000 4,501,500 1.00

4,000 500 18,000 8,002,000 0.89

Table 3 Speedup factor per unit cache for Class 2

Number of
transactions

Cache size H2 H1 Speedup

500 100 1,500 125,250 0.84

1,000 250 2,500 500,500 0.80

1,500 250 5,250 1,125,750 0.86

2,000 350 7,000 2,001,000 0.82

3,000 500 10,500 4,501,500 0.86

4,000 1,000 10,000 8,002,000 0.80

Table 4 Speedup factor per unit cache for Class 1

Number of
transactions

Cache size H2 H1 Speedup

500 500 500 125,250 0.50

1,000 1,000 1,000 500,500 0.50

1,500 1,500 1,500 1,125,750 0.50

2,000 2,000 2,000 2,001,000 0.50

3,000 3,000 3,000 4,501,500 0.50

4,000 4,000 4,000 8,002,000 0.50

size selected by the WO formula. Table 2 shows that the
contribution of one cache unit is captured by a speedup value
of approximately 0.9. As an example for N = 500 transac-
tions and cache size C = 50, each cache unit improves the
performance by a magnitude of 0.91 and the total cache of
size 50 increases performance by a magnitude of 45.5 result-
ing in decreasing the total number of hashes from 125,250
to 2,750.

Table 3 shows similar results for Class 2 devices (w2 =
12). The cache sizes used for these devices are bigger than
those of Class 3. It should be mentioned that for values of N
equal to 2,000 and higher, the weight w2 = 12 gave multiple
best cache sizes (giving the same WO value). We therefore
used a weight value w2 = 15 to pick the specific cache size
shown in Table 3.

For Class 1 devices (w1 ≈ 0), the WO formula suggests
using complete caching. Table 4 gives the results for the
speedup factor for Class 1 (weight w1 ≈ 0) when the cache
size used is equal to the value of N. The speedup factor for
Class 1 with complete caching is 0.50.

5.5 HACH with non-uniform cache spacing

Tables 5 and 6 give comparisons between sparse caching
with uniform spacing and with non-uniform spacing. For
non-uniform spacing, we allocated 50 % of the cache for
the first 20 % of transactions, which we call “high-priority
transactions”. The other 50 % of the cache is used to serve

123

364 A. Alabrah et al.

Table 5 Average speedup for a high-priority transaction

Number of
transactions

High-
priority

Non-uniform
spacing

Uniform
spacing

Speedup

500 100 1.5 4.5 3.00

1,000 200 3.5 9.5 2.71

1,500 300 5.5 14.5 2.64

2,000 400 7.5 19.5 2.60

3,000 600 11.5 29.5 2.57

4,000 800 15.5 39.5 2.55

Table 6 Average slow-up of a low-priority transaction

Number of
transactions

Low-
priority
N

Non-uniform
spacing

Uniform
spacing

Slow-up

500 400 7.5 4.5 1.67

1,000 800 15.5 9.5 1.63

1,500 1,200 23.5 14.5 1.62

2,000 1,600 31.5 19.5 1.62

3,000 2,400 47.5 29.5 1.61

4,000 3,200 63.5 39.5 1.61

the remaining 80 % transactions, which we call the low-
priority (uncertain) transactions. Table 5 analyzes the average
authentication time (average number of hash operations) of
a high-priority transaction. The non-uniform spacing gives
superior (much smaller) authentication time compared to the
uniform spacing. The last column in Table 5 gives the value
of speedup for a high priority transaction. For example when
N = 500, the average authentication time for a high-priority
transaction using non-uniform spacing is 1.5 hash operations,
whereas the corresponding figure for uniform spacing is 4.5.
This means that high-priority transactions enjoy a threefold
speedup under the non-uniform spacing scheme compared to
the uniform spacing scheme. As the number of transactions
goes up, the speedup factor decreases slightly and becomes
equal to 2.55 at N = 4, 000.

Table 6 analyzes the average authentication time (aver-
age number of hash operations) of a low-priority transaction.
The non-uniform spacing gives larger (slower) turnaround
time compared to the uniform spacing. The last column in
Table 6 gives the value of the slow-up for a low-priority
transaction. Notice that the uniform spacing scheme gives
the same speed for both high-priority transactions (Table
5) and low-priority transactions (Table 6). From Tables 5
and 6, we see that the non-uniform caching scheme has
positively impacted high-priority transactions by a speedup
factor of 2.5 or higher and has negatively impacted low-
priority transactions by a slow-up factor of only 1.67 or
less.

Fig. 8 Handling unknown large values of N: comparison between
HCostavg with and without sparse caching

5.6 Approximate knowledge of N

In the previous sections, we performed our simulation tests
assuming that the value of N is accurately known. The
value of N in most real-life applications is not accurately
known. A minimal level of sparse caching can help the
developer apply hash chains of larger length without the
fear of any increase in the average or maximum authen-
tication time for a transaction. Figure 8 shows the impact
of using sparse caching with minichain_len set at 1,000 for
sessions with unknown number of transactions exceeding
1,000. It can be seen that sparse caching reduces HCostavg

of transactions when N is not precisely known. For exam-
ple, when N = 4, 000 transactions, the value of HCostavg

without sparse caching is approximately 1,500. By placing
only three cache units, the value of HCostavg is reduced
to 375. We observed that the reduction in HCostavg due
to sparse caching increases as the number of transactions
increases.

5.7 Geometric spacing

In Sect. 4.6, we introduced the idea of geometric spacing
of cache which gives smaller HCostavg value for earlier
transactions in cases when the exact number of transac-
tions N is not known and could be as small as one and as
large as N. The idea involves increasing the cache spacing
intervals progressively as the real number of transactions
increases.

Figure 9 shows the test results for the case when N is
not known, and the developer has chosen the value N =
500 to be the length of the hash chain. The horizontal
axis represents the real number of transactions, denoted
K. The figure compares the performance of the following
three schemes for values of K = 5, 10, 20, 50, 100 and
200.

123

Enhancing security of cookie-based sessions 365

Fig. 9 Comparison of HCostavg between uniform, non-uniform and
geometric spacing

• Uniform caching with equal spacing as described in Sect.
4.2.

• Non-uniform caching with two groups as described in
Sect. 4.5.

• Geometric spacing as described in Sect. 4.6.

As seen in Fig. 9, using the geometric spacing policy
improves the performance of HACH compared to the other
two policies when the real number of transactions K is lower
than 50. For the case K = 50, the geometric spacing performs
better than uniform spacing and has the same performance as
the non-uniform spacing policy. For K = 100 transactions,
geometric spacing still performs better than uniform spacing
but worse than non-uniform spacing. The geometric spacing
scheme does not benefit HACH when K ≥ 120 transactions.

5.8 Energy consumption

In Sect. 4.7, we introduced the energy consumption metric
used to evaluate the performance of our sparse caching pro-
tocol. Since the energy consumption is largely influenced by
the cryptographic hash function used, the type and amount
of hashing operations required to carry out the authentication
of the internet session translate into the energy consumption
of the authentication scheme.

Figure 10 illustrates the energy consumption comparison
between our sparse caching-based HACH protocol and its
counterpart without sparse caching. It should be noted that
the sparse caching in this comparison is conducted using the
sqrt policy and SHA-1 hashing. As can be seen in the figure,
our sparse caching scheme tremendously improves energy
consumption of the HACH authentication protocol. It is also
noted that the HACH protocol suffers from a huge increase
in energy consumption making it far from ideal especially
for platforms with limited energy capacities.

Fig. 10 Energy consumption comparison of HACH with and without
sparse caching

6 Conclusion

In this paper, we have shown that the use of lightweight
easy to implement sparse caching approach can significantly
improve the performance of the widely used cryptographic
one-way hash chain technique to secure session cookies in
terms of computational overhead and energy consumption.
We introduced a WO formula to help select a best cache size
depending on different users’ storage requirements. Different
cache spacing techniques have been investigated to demon-
strate different connection behaviors.

We presented the results of extensive performance tests
that have shown the significant reduction in authentication
cost achieved by the sparse caching schemes. We have also
shown how to deal with real-life situations in which the num-
ber of transactions per user session is largely unknown and
cannot be accurately estimated.

References

1. Chen, J., Jiang, M., Liu, Y.: Wireless LAN security and IEEE
802.11i. IEEE Wirel. Commun. 12(1), 27–36 (2005)

2. Sreedhar, C., Madhusudhana, S., Kasiviswanath, N.: A survey on
security issues in wireless ad hoc network routing protocols. Int. J.
Comp. Sci. Eng. 12(2), 224–232 (2010)

3. Siddiqui, M., Hong, C.: Security issues in wireless mesh networks.
In: Proceedings of IEEE International Conference on Multimedia
and Ubiquitous Engineering (MUE’07). Seoul, Korea (2007)

4. Zhou, Y., Fang, Y., Zhang, Y.: Securing wireless sensor networks:
a survey. IEEE Commun. Surv. 10(3), 6–28 (2008)

5. Ponurkiewicz, B.: FaceNiff—A new Android download applica-
tion. http://faceniff.ponury.net/. Accessed 26 Jan 2012

6. Butler, E.: FireSheep: cookie snatching made simple. In: ToorCon
Conference. San Diego, CA (2010). Software available at http://
codebutler.com/firesheep

7. Riley, R., Ali, N., Al-Senaidi, K., Al-Kuwari, A.: Empowering
users against sidejacking attacks. In: Proceedings of the ACM SIG-
COMM Conference on SIGCOMM. New Delhi, India (2010)

123

http://faceniff.ponury.net/
http://codebutler.com/firesheep
http://codebutler.com/firesheep

366 A. Alabrah et al.

8. Liu, A., Kovacs, J., Huang, C., Gouda, M.: A secure cookie proto-
col. In: Proceedings of 14th International Conference on Computer
Communications and Networks (2005)

9. Lamport, L.: Password authentication with insecure communica-
tion. Commun. ACM 24(11), 770–772 (1981)

10. Zhang, Y., Fang, Y.: ARSA: an attack-resilient security architecture
for multihop wireless mesh networks. IEEE J. Sel. Areas Commun.
24(10), 1916–1928 (2006)

11. Hu, Y., Perrig, A., Johnson, D.: Ariadne: a secure on-demand rout-
ing protocol for ad hoc networks. Wirel. Netw. 11(1–2), 21–38
(2005)

12. Hu, Y., Johnson, D., Perrig, A.: SEAD: secure efficient distance
vector routing for mobile wireless ad hoc networks. In: Proceedings
of the 4th IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA 2002), pp. 3–13. Calicoon, NY (2002)

13. Dacosta, I., Chakradeo, S., Ahamad, M., Traynor, P.: One-time
cookies: preventing session hijacking attacks with disposable
credentials. Technical Report Georgia Institute of Technology
(2011). http://smartech.gatech.edu/bitstream/handle/1853/37000/
GT-CS-11-04.pdf

14. Cashion, J., Bassiouni, M.: Robust and low-cost solution for pre-
venting sidejacking attacks in wireless networks using a rolling
code. In: Proceedings of the 7th ACM International Sympo-
sium on QoS and Security of Wireless and Mobile Networks
(Q2SWinet’11), pp. 21–26. Miami Beach, Florida (2011)

15. Liu, D., Ning, P.: Multilevel µTESLA: broadcast authentication for
distributed sensor networks. Trans. Embed. Comput. Syst. (TECS)
3(40) (2004)

16. Tan, H., Jha, S., Ostry, D., Zic, J., Sivaraman, V.: Secure multi-
hop network programming with multiple one-way key chains. In:
Proceedings of the First ACM Conference on Wireless Network
Security-WiSec ’08 (2008)

17. Khalil, I., Bagchi, S., Rotaru, C.N., Shroff, N.B.: UnMask: utiliz-
ing neighbor monitoring for attack mitigation in multihop wireless
sensor networks. Ad Hoc Netw. 8(2), 148–164 (2010)

18. Li, M., Yu, S., Guttman, J.D., Lou, W., Ren, K.: Secure ad hoc trust
initialization and key management in wireless body area networks.
ACM Trans. Sens. Netw. (TOSN) 9(2), 18 (2013)

19. Chen, T.H., Hsiang, H.C., Shih, W.K.: Security enhancement on
an improvement on two remote user authentication schemes using
smart cards. Future Gener. Comput. Syst. 27(4), 377–380 (2011)

20. Li, C.T., Hwang, M.S.: An efficient biometrics-based remote user
authentication scheme using smart cards. J Netw. Comput. Appl.
33(1), 1–5 (2010)

21. Dai, X., Grundy, J.: NetPay: an off-line, decentralized micro-
payment system for thin-client applications. Electron. Commer.
Res. Appl. 6(1), 91–101 (2007)

22. Liaw, H., Lin, J., Wu, W.: A new electronic traveler’s check scheme
based on one-way hash function. Electron. Commer. Res. Appl.
6(4), 499–508 (2008)

23. Gupta, A., Weber, W., Mowry, T.: Reducing Memory and Traf-
fic Requirements for Scalable Directory-based Cache Coherence
Schemes. Springer, NY (1992)

24. Deftu, A., Murarasu, A.: Optimization techniques for dimension-
ally truncated sparse grids on heterogeneous systems. In: Proceed-
ings of the 21st Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pp. 351–358
(2013)

25. Lau, W., Kumar, M., Venkatesh, S.: A cooperative cache archi-
tecture in support of caching multimedia objects in MANETs. In:
Proceedings of the 5th ACM International Workshop on Wireless
Mobile Multimedia, pp. 56–63 (2002)

26. Douglas, C. C., Hu, J., Iskandarani, M., Kowarschik, M., Rüde, U.,
Weiss, C.: Maximizing cache memory usage for multigrid algo-
rithms. In: Chen, Z., et al. (eds.) Multiphase Flows and Transport
in Porous Media: State of the Art. Lecture Notes in Physics, vol.
552, pp. 124–137. Springer, Berlin (2000)

27. Hu, Y., Jakobsson, M., Perrig, A.: Efficient constructions for one-
way hash chains. In: Applied Cryptography and Network Secu-
rity. Lecture Notes in Computer Science, vol. 3531, pp. 423–441.
Springer, Berlin (2005)

28. Chandramouli, R., Bapatla, S., Subbalakshmi, K., Uma, R.: Battery
power-aware encryption. ACM Trans. Inf. Syst. Secur. (TISSEC)
9(2), 162–180 (2006)

29. Potlapally, N., Ravi, S., Raghunathan, A., Jha, N.: Analyzing the
energy consumption of security protocols. In: Proceedings of the
2003 International Symposium on Low Power Electronics and
Design, pp. 30–35 (2003)

123

http://smartech.gatech.edu/bitstream/handle/1853/37000/GT-CS-11-04.pdf
http://smartech.gatech.edu/bitstream/handle/1853/37000/GT-CS-11-04.pdf

	Enhancing security of cookie-based sessions in mobile networks using sparse caching
	Abstract
	1 Introduction
	2 Previous work
	3 The one-way hash chain model
	4 Sparse caching for HACH
	4.1 Basic idea
	4.2 Sparse caching with uniform spacing
	4.3 Weighted Overhead formula
	4.4 Uncertainty in the number of transactions
	4.5 Sparse caching with non-uniform spacing
	4.6 Caching with geometric spacing
	4.7 Energy consumption

	5 Evaluation and performance results
	5.1 Impact of cache size on HACH performance
	5.2 Cache space allocation policies
	5.3 Effectiveness of sparse caching
	5.4 Selecting cache size for mobile devices
	5.5 HACH with non-uniform cache spacing
	5.6 Approximate knowledge of N
	5.7 Geometric spacing
	5.8 Energy consumption

	6 Conclusion
	References

